On Some Modular Linear Codes

IMS Workshop on Coding and Cryptography, 10–13 September, National University of Singapore, Singapore

Manish K. Gupta

Department of Mathematics
University of Canterbury, Christchurch – 8001, NEW ZEALAND.
e-mail: mankg@computer.org
URL-: web.math.canterbury.ac.nz/~mathmkg

Monday September 10. 2001 Time: 4:30 pm
Outline:

• Brief History, Motivation and Terminology
• Linear Codes over \mathbb{Z}_p^2
• The concept of p-dimension
• Generalized Hamming Weights and Chain Condition
• Simplex and Hamming Codes
• Properties
• Generalized Gray Images
• Conclusions / Summary
History, Motivation and Introduction

• Codes over finite rings (last decade) Work of Nechaev et al, Hammons et al
 Many important families of binary non-linear codes are linear over \mathbb{Z}_4
 K(m) Kerdock Code P(m) Preparata-like code
• These notions has been generalized to codes over \mathbb{Z}_{p^2}, p arbitrary prime
 Asch and Tilborg (AAECC-11, 2001)
• \mathbb{Z}_4-Simplex and Hamming Codes: Bhandari, Gupta and Lal (1999)
• Construction of these to codes over \mathbb{Z}_{p^2}
Basic Terminology:

- **Alphabets** $\mathbb{F}_q := \{\alpha_1, \alpha_2, \ldots, \alpha_q\}$
- $GF(q)$ ($q = p^m$)
 Galois field having q elements
- $\mathbb{Z}_q := \{0, 1, 2, \ldots, q - 1\}$
- $\mathbb{F}_q^n := \{(x_1, \ldots, x_n) \mid x_i \in \mathbb{F}_q\}$
- $\mathcal{C} : (n, M)$ Code : $\mathcal{C} \subseteq \mathbb{F}_q^n$ and $|\mathcal{C}| = M$
- Linear Code : $\mathcal{C} :$ Subspace of $GF(q)^n$
- **Generator Matrix** $G_{k \times n}$ ($k < n$) (of full rank) over $GF(q)$
 s.t. $\mathcal{C} = \text{row space} (G)$
- $|\mathcal{C}| = q^k$: $k = \text{dim} \mathcal{C}$
- **Parity Check Matrix** $H_{(n-k) \times n}$ (of full rank) over $GF(q)$ s.t. $\mathcal{C} = \text{null space} (H)$
- Dual Code $\mathcal{C}^\perp = \{y \in \mathbb{F}_q^n \mid x \cdot y = 0 \in \mathbb{F}_q, \forall x \in \mathcal{C}\}$
- $\mathcal{C} :$ Self orthogonal (Self dual) if $\mathcal{C} \subseteq \mathcal{C}^\perp (\mathcal{C} = \mathcal{C}^\perp)$
Various distances:

Hamming distance: (R. W. Hamming 1948)

\[d_H(x, y) = | \{ i \mid x_i \neq y_i \} |; x, y \in \mathbb{F}_q^n \]

= Number of nonzero components in \(x - y = w_H(x - y) \)

\[d_H = \min \{ d_H(x, y) \mid x, y \in \mathcal{C}, x \neq y \} \]

\(\mathcal{C} : [n, k, d_H] \) Code : Can correct up to \(\left\lfloor \frac{(d_H-1)}{2} \right\rfloor \) errors

Lee distance: (C. Y. Lee 1958)

Suitable for memoryless, discrete and symmetric channels

\[w_L(a) = \min \{ a, q - a \}, a \in \mathbb{Z}_q \]

\[w_L(x) = \sum_{i=1}^{n} w_L(x_i), x \in \mathbb{Z}_q^n \]

\[d_L(x, y) = w_L(x - y) \]
\[d_L = \min \{ d_L(x, y) \mid x, y \in C, x \neq y \} \]
Linear Codes over \mathbb{Z}_{p^2}

- Linear Code C of length n over \mathbb{Z}_{p^2}: Additive subgroup of \mathbb{Z}_p^n
- $C : [n, k, d_H, d_{HW}]$: where $k = 2k_0 + k_1$ and $|C| = p^{2k_0}p^{k_1}$
- C has a generator matrix of the form $G = \begin{bmatrix} I_{k_0} & A & B \\ 0 & pI_{k_1} & pC \end{bmatrix}$ $(k_0 + k_1) \times n$

 A and C are matrices with entries from $\{0, 1, \ldots, p - 1\}$

 B is a matrix with arbitrary entries from \mathbb{Z}_{p^2}

 I_{k_i} is the identity matrix of order k_i.

- Two p-ary linear codes

 Reduction Code

 $C^{(1)} = \{u \mid c \equiv u \pmod{p}, \ c \in C\}$

 Torsion Code

 $C^{(2)} = \{v \mid pv \in C\}$

- If $k_1 = 0$ then $C^{(1)} = C^{(2)}$
\textbf{p-dimension of Linear Codes over } \mathbb{Z}_p^2:\textbf{ }

- **1990:** Vazirani, Saran and Sundar Rajan
 Trellis Description
- The following two statements are not equivalent for \(S \subseteq \mathbb{Z}_4^n \) over \(\mathbb{Z}_4 \)
 1. A nontrivial linear combination of vectors in \(S \) is zero.
 2. One of the vector in \(S \) is a linear combination of some other vectors in \(S \)
- \(S = \{(1, 2); (1, 0)\} \) satisfies (1) but not (2)
- \(S = \{v_1, v_2, \ldots, v_k\} \) an ordered subset
- \(p\)-span (\(S \)):= \(\left\{ \sum_{i=1}^{k} a_i v_i | a_i \in \mathbb{Z}_p \right\} \)
- \(S : p\)-generating sequence
 \(pv_i = \sum_{j=i+1}^{k} a_j v_j \); \(a_j \in \mathbb{Z}_p \); \(i < k, pv_k = 0 \)
- \(S : p\)-linearly dependent if
 1. \(S \) is \(p\)-gen. seq. and
 2. \(\exists \ a_i \in \mathbb{Z}_p \), not all \(a_i \) zero \(\exists \ \sum_{i=1}^{k} a_i v_i = 0 \)
• $B \subseteq C$: p-basis for C if
 1. B : p-linearly independent
 2. p-span(B) = C

• Every vector in C is a unique p-linear combination of vectors in B

• $p - \text{dim} \left(\mathbb{Z}_{p^2}^n \right) = 2n$

• Rows of

\[
B = \begin{bmatrix}
I_{k_0} & A & B \\
pI_{k_0} & pA & pB \\
0 & pI_{k_1} & pC
\end{bmatrix}
\]

form a p-basis for the code generated by G
Generalized Hamming Weights (G.H.W.)

- $\mathcal{C} : [n, k, d_H]$ Code
- $\mathcal{D}_r(\leq \mathcal{C}) : [n, r]$ r-dimensional Subcode
- $w_S(\mathcal{D}_r) = |\{i | x_i \neq 0 \text{ for some } x \in \mathcal{D}_r\}|$: Support size of \mathcal{D}_r
- $d_r(\mathcal{C}) = \min\{w_S(\mathcal{D}_r) | \mathcal{D}_r \leq \mathcal{C}\}; 1 \leq r \leq k$
- For $r=1$, $d_1(\mathcal{C}) = d_H$
- **Weight Hierarchy** of \mathcal{C} : $\{d_r(\mathcal{C}) | 1 \leq r \leq k\}$
- \mathcal{C} satisfies **Chain Condition** if there exists a chain
 \[D_1 \subseteq D_2 \subseteq \cdots \subseteq D_k,\]
 of subcodes of \mathcal{C} satisfying $w_S(D_r) = d_r(\mathcal{C})$, $1 \leq r \leq k$.

Manish K. Gupta
Homogeneous weight

• For $x \in \mathbb{Z}_{p^2}$ it is defined as:

$$w_{HW}(x) = \begin{cases}
0 & \text{if } x = 0 \\
p - 1 & \text{if } gcd(x, p^2) = 1 \\
p & \text{if } x \neq 0, gcd(x, p^2) = p.
\end{cases}$$

• For $x \in \mathbb{Z}_{p^2}^n$, $w_{HW}(x) = \sum_{j=1}^{n} w_{HW}(x_i)$.

• For $x, y \in \mathbb{Z}_{p^2}^n$, $d(x, y) = w_{HW}(x - y)$.

• **Lemma 1:** Let $D : [n, r]$ linear code over \mathbb{Z}_{p^2}

$$\sum_{c \in D} w_{HW}(c) = (p - 1)p^r \cdot w_S(D).$$

Proof: The $(p^r \times n)$ array of all the codewords in D contains the columns with entries only of the following three types:

1. only zeros
2. $\{0, p, 2p, \ldots, (p - 1)p\}$ equally often
3. Each entry of \mathbb{Z}_{p^2} equally often.
Remark 2: Thus GHW can also be defined by for $1 \leq r \leq k$

$$d_r(C) = \frac{1}{(p-1)p^r} \min \left\{ \sum_{c \in D} w_{HW}(c) \mid D \text{ is an } [n, r] \text{ subcode of } C \right\}.$$

- Minimum homogeneous weight $d_{HW} = \min \{ w_{HW}(c) \mid c(\neq 0) \in C \}$

Corollary 3: For $1 \leq r \leq k$ the r^{th} GHW of C satisfies

$$d_r(C) \geq \left\lceil \frac{(p^r - 1)d_{HW}}{(p-1)p^r} \right\rceil.$$

Corollary 4: $d_H \geq \left\lceil \frac{d_{HW}}{p} \right\rceil$.

$C \ : \ type \ \alpha \ (\beta)$ if $d_H = \left\lceil \frac{d_{HW}}{p} \right\rceil \left(d_H > \left\lceil \frac{d_{HW}}{p} \right\rceil \right)$.

Corollary 5: (Plotkin Type Bound) For an $[n, k]$ linear code over \mathbb{Z}_{p^2} we have

$$d_{HW} \leq \frac{n(p-1)p^k}{p^k - 1}.$$
Let G^α_k be a matrix over \mathbb{Z}_{p^2} consisting of all possible distinct columns of length k.

$$G^\alpha_k = \begin{bmatrix} (0 1 2 3 \cdots (p^2 - 1)) \otimes 1 \\ 1 \otimes G^\alpha_{k-1} \end{bmatrix}_{k \times p^{2k}}$$

where 1 (the all 1 vector) in the first row is of length $p^{2(k-1)}$ and that in the second row is of length p^2.

- S^α_k is a $[p^{2k}, 2k]$ code.
- Each entry of \mathbb{Z}_{p^2} occurs equally often in every row of G^α_k.

Remark 6: If $R_i, 1 \leq i \leq k$ are the rows of the matrix G^α_k then $w_H(R_i) = p^{2k-2}(p - 1)$ and $w_{HW}(R_i) = p^{2k}(p - 1)$.
Let $\mathbf{c} = (c_1, c_2, \ldots, c_n) \in \mathcal{C}$ for each $j \in \mathbb{Z}_{p^2}$ let $\omega_j(\mathbf{c}) = |\{i \mid c_i = j\}|$.

Lemma 7: Let $\mathbf{c}(\neq 0) \in S_k^\alpha$.

1. If for at least one i, c_i is a unit then $\forall j \in \mathbb{Z}_{p^2} \omega_j = p^{2k-2}$ in \mathbf{c}.
2. If $\forall i, c_i \in Z = \{0, p, 2p, \ldots, (p-1)p\}$ then $\forall j \in Z \omega_j = p^{2k-1}$ in \mathbf{c}.

p-ary type α simplex code

$$G(P_k^\alpha) = \begin{bmatrix} (0 \ 1 \ 2 \ 3 \ \cdots \ (p-1)) \otimes 1 \\ 1 \otimes G(P_{k-1}^\alpha) \end{bmatrix}_{k \times p^k}$$

$k \geq 2$ and $G(P_1^\alpha) = [0 \ 1 \ 2 \ 3 \ \cdots \ (p-1)]$.

Lemma 8: The torsion code of S_k^α is equivalent to the p^k copies of p-ary type α simplex code.
Theorem 9: The Hamming and Homogeneous weight distribution of S_k^α are:

1. $A_H(0) = 1$, $A_H(p^{2k-1}(p - 1)) = p^k - 1$, $A_H(p^{2k-2}(p^2 - 1)) = p^k(p^k - 1)$, and
2. $A_{HW}(0) = 1$, $A_{HW}(p^{2k}(p - 1)) = p^{2k} - 1$,

where $A_H(i)$ ($A_{HW}(i)$) denotes the number of vectors of Hamming (Homogeneous) weight i in S_k^α.

Proof: By Lemma 7, each nonzero codeword of S_k^α has Hamming weight either $p^{2k-2}(p^2 - 1)$ or $p^{2k-1}(p - 1)$ and Homogeneous weight $p^{2k}(p - 1)$. Since dimension of the torsion code is k, there will be $p^k - 1$ codewords of the weight $p^{2k-1}(p - 1)$. Hence the number of codewords having weight $p^{2k-2}(p^2 - 1)$ will be $p^{2k} - p^k$.
Remark 10:

1. S^α_k is an equidistant code with respect to Homogeneous distance whereas S_k is an equidistant binary code with respect to Hamming distance.
2. The minimum weights are: $d_H = p^{2k-1}(p - 1)$ and $d_{HW} = p^{2k}(p - 1)$
3. S^α_k is of type α as $d_H = \frac{d_{HW}}{p}$.

Symmetrized weight enumerator (swe) of a linear code C over \mathbb{Z}_{p^2}

$$swe(x, y, z) = \sum_{c \in C} x^{n_0(c)} y^{n_1(c)} z^{n_p(c)},$$

where $n_0(c) = |\{1 \leq i \leq n \mid c_i = 0\}|$, $n_1(c) = |\{1 \leq i \leq n \mid \gcd(c_i, p^2) = 1\}|$

and

$$n_p(c) = |\{1 \leq i \leq n \mid \gcd(c_i, p^2) = p\}|.$$

Let \tilde{S}^α_k be the punctured code of S^α_k obtained by deleting the zero coordinate. Then the swe of \tilde{S}^α_k is

$$swe(x, y, z) = x^{n(k)} + (p^k - 1)x^{p^{2k-1}}z^{p^{2k}} + p^k(p^k - 1)x^{n(k-1)}y^{(p-1)p^{2k-1}}z^{p^{2k-1}},$$

where $n(k) = p^{2k} - 1$.

Manish K. Gupta
Type β Simplex Code: S^β_k

Let

$$G_2^\beta = \begin{bmatrix} 1 & (0 \ p \ 2p \ 3p \cdots (p^2 - p)) \\ G_1^\alpha & 1 \end{bmatrix}_{2 \times p^2+p},$$

and for $k > 2$,

$$G_k^\beta = \begin{bmatrix} 1 & (0 \ p \ 2p \ 3p \cdots (p^2 - p)) \otimes 1 \\ G_{k-1}^\alpha & 1 \otimes G_{k-1}^\beta \end{bmatrix},$$

where all the five all 1 vectors i.e, 1’s are of appropriate sizes and tensor product is expanded from right to left.

- No two columns of G_k^β are multiples of each other.
- The length of S^β_k is $\frac{p^{k-1}(p^k-1)}{p-1}$.
- S^β_k is a $\left[\frac{p^{k-1}(p^k-1)}{p-1}, 2k\right]$ code.
Proposition 11: Each row of G_k^β contains p^{2k-2} units and
$\forall j \in Z = \{0, p, 2p, \ldots, (p - 1)p\}$ $\omega_j = \frac{p^{k-2}(p^{k-1}-1)}{p-1}$.

Remark 12: If $R_i, 1 \leq i \leq k$ are the rows of the matrix G_k^β then
$w_H(R_i) = p^{k-2}(p^k + p^{k-1} - 1)$ and $w_{HW}(R_i) = p^{k-1}(p^k - 1)$.

Lemma 13: Let $c \in S_k^\beta, c \neq 0$.

1. If for at least one i, c_i is a unit then $\sum_{i \in U} \omega_i(c) = p^{2k-2}$, and
$\forall j \in Z \omega_j(c) = \frac{p^{k-2}(p^{k-1}-1)}{p-1}$.

2. If $\forall i, c_i \in Z = \{0, p, 2p, \ldots, (p - 1)p\}$ then $\sum_{i \in Z, i \neq 0} \omega_i(c) = p^{2k-2}$ and
$\omega_0(c) = p^{k-1}p^{k-1} - 1 \frac{p-1}{p-1}$ in c.

Lemma 14: The p-ary torsion code of S_k^β is equivalent to p^{k-1} copies of the p-ary simplex code.
Theorem 15: The Hamming and Homogeneous weight distributions of S^β_k are:

1. $A_H(0) = 1$, $A_H \left(p^{2(k-1)} \right) = (p^k - 1)$, $A_H \left(p^{k-2}(p^k + p^{k-1} - 1) \right) = p^k(p^k - 1)$.

2. $A_{HW}(0) = 1$, $A_{HW}(p^{2k-1}) = (p^k - 1)$, $A_{HW}(p^{k-1}(p^k - 1)) = p^k(p^k - 1)$,
 where $A_H(i)$ ($A_{HW}(i)$) denotes the number of vectors of Hamming (Homogeneous) weight i in S^β_k.

Remark 16:

1. The swe of S^β_k is given as

$$swe(x, y, z) = x^{n(k)} + (p^k - 1)x^{pn(k-1)}z^{p^{2k-2}} +$$

$$p^k(p^k - 1)x^{n(k-1)}y^{p^{2k-2}}z^{p^{k-2}(p^{k-1} - 1)},$$

where $n(k) = p^{k-1}\frac{p^{k-1}}{p-1}$.

2. The minimum weights of S^β_k are: $d_H = p^{2k-2}$ and $d_{HW} = p^{k-1}(p^k - 1)$.
Griesmer Bound for Codes over Rings

Theorem 17: Shiromoto and Strome (2001) For a linear code C of length n, rank k and minimum Hamming distance d_H over \mathbb{Z}_{p^s} the following inequality holds:

$$n \geq k - 1 \sum_{i=0}^{k-1} \left\lceil \frac{d_H}{p^i} \right\rceil.$$

Application of the above inequality to S^β_k for $s = 2$ yields the following.

Proposition 18: The simplex codes of type β meet the Griesmer bound for codes over rings.

\[n = p^{k-1} \frac{p^{k-1}}{p-1} \text{ and } d_H = p^{2(k-1)} \]
Theorem 19: S_k^α satisfies the chain condition and its weight hierarchy is given by

$$d_r(S_k^\alpha) = p^{2k} - p^{2k-r}; 1 \leq r \leq 2k.$$

Proof: By Remark, Any r-dimensional subcode of S_k^α is of constant Homogeneous weight. Hence by definition,

$$d_r(S_k^\alpha) = \frac{1}{(p-1)p^r(p^r-1)p^{2k}(p-1)} = p^{2k} - p^{2k-r}.$$

Let

\begin{align*}
D_1 &= <pR_1>, \\
D_2 &= <pR_1,pR_2>, \\
D_3 &= <R_1,pR_1,pR_2>, \\
D_4 &= <R_1,pR_1,R_2,pR_2>, \ldots, \text{and} \\
D_{2k} &= <R_1,pR_1,\ldots,R_k,pR_k>.
\end{align*}
It is easy to verify that
\[D_1 \subseteq D_2 \subseteq \cdots \subseteq D_{2k}, \]
and \(w_S(D_r) = d_r(S_k^\alpha) \) for \(1 \leq r \leq 2k \).

Theorem 20: \(S_k^\beta \) satisfies the chain condition and its weight hierarchy is given by
\[
d_r(S_k^\beta) = n(k) - p^{k-r-1}(p^k - p^{\lceil \frac{r}{2} \rceil}) \frac{p-1}{p-1} \\
1 \leq r \leq 2k.
\]
where \(n(k) = p^{k-1}(p^{k-1}) \frac{p-1}{p-1} \).

Proof:
\[
d_r(S_k^\beta) = pd_r(S_{k-1}^\beta) + d_r(S_{k-1}^\alpha)
\]
\[
D_1 = < pR_1 >, \\
D_2 = < R_1, pR_1 >, \\
D_3 = < R_1, pR_1, pR_2 >, \\
D_4 = < R_1, pR_1, R_2, pR_2 >, \ldots, \text{and} \\
D_{2k} = < R_1, pR_1, \ldots, R_k, pR_k >.
\]
Theorem 21: The codes $S_k^\alpha (k \geq 1)$ and $S_k^\beta (k \geq 3)$ are self orthogonal.

Proof: By Induction on k.
Let $x \in \mathbb{Z}_{p^2}$. Thus $x = a + lp$, where $0 \leq a, l \leq p - 1$.

For $k = 0, \ldots, p - 1$ Define

$$
\phi_k(x) = (ka + l) \pmod{p}
$$

Then ϕ, a map from \mathbb{Z}_{p^2} to \mathbb{Z}_p^p, is defined as:

$$
\phi(x) = (\phi_0(x), \ldots, \phi_{p-1}(x)).
$$

ϕ has natural extension from $\mathbb{Z}_{p^2}^n$ into \mathbb{Z}_p^{pn}.
Example: For \(p = 3 \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\phi(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>012</td>
</tr>
<tr>
<td>2</td>
<td>021</td>
</tr>
<tr>
<td>3</td>
<td>111</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>102</td>
</tr>
<tr>
<td>6</td>
<td>222</td>
</tr>
<tr>
<td>7</td>
<td>201</td>
</tr>
<tr>
<td>8</td>
<td>210</td>
</tr>
</tbody>
</table>

Proposition 22: Asch and Tilborg (2001)

\(\phi \) is isometric injection from \((\mathbb{Z}_p^2, w_{HW})\) into \((\mathbb{Z}_p^p, w_H)\)
Generalized Gray Images

Theorem 23: \(\phi(\overline{S}_k^\alpha) \) and \(\phi(S_k^\beta) \) are non-linear \(p \)-ary families of codes for all \(k \).

Remark 24:

1. \(\phi(\overline{S}_k^\alpha) \) is a \(p \)-ary non-linear code of length \(p^{2k+1} - p \) and minimum Hamming distance \(p^{2k}(p-1) \). It meets the \(p \)-ary Plotkin bound and \(n < \frac{p}{p-1}d_H \).

2. \(\phi(S_k^\beta) \) is a \(p \)-ary non-linear code of length \(p^k \left(\frac{p^k-1}{p-1}\right) \) and minimum Hamming distance \(p^{k-1}(p^k - 1) \). This is an example of a code having \(n = \frac{p}{p-1}d_H \).
Conclusions / Summary

- $\phi(GK_{p^2,m}) : (p^{m+1}, p^{2m+2}, \geq (p - 1)(p^m - (p - 1)p^{m-2})$
- $\phi(GP_{p^2,m}) : (p^{m+1}, p^{2p^m-2m-2}, 3(p - 1))$
- Generalized Kerdock and Preparata Codes (p^2-ary linear) miss some of their nice combinatorial properties when p is odd. For e.g. $\phi(GP_{p^2,m})$ does not meet the Johnson Bound. A fortiori: This code is not uniformly packed. (Asch and Tilborg 2001)

Question 1:
- Does the generalized Gray map of Hamming code over \mathbb{Z}_{p^2} is uniformly packed? (we know that it is true for $p = 2$)

Answer:

$$\phi(S_{2^\beta}^{\perp}) : (p^3 + p^2, p^{2p^2+2p-4}, 3(p - 1)) .$$